A phenotype for enigmatic DNA polymerase II: a pivotal role for pol II in replication restart in UV-irradiated Escherichia coli.
نویسندگان
چکیده
DNA synthesis in Escherichia coli is inhibited transiently after UV irradiation. Induced replisome reactivation or "replication restart" occurs shortly thereafter, allowing cells to complete replication of damaged genomes. At the present time, the molecular mechanism underlying replication restart is not understood. DNA polymerase II (pol II), encoded by the dinA (polB) gene, is induced as part of the global SOS response to DNA damage. Here we show that pol II plays a pivotal role in resuming DNA replication in cells exposed to UV irradiation. There is a 50-min delay in replication restart in mutant cells lacking pol II. Although replication restart appears normal in DeltaumuDC strains containing pol II, the restart process is delayed for >90 min in cells lacking both pol II and UmuD'(2)C. Because of the presence of pol II, a transient replication-restart burst is observed in a "quick-stop" temperature-sensitive pol III mutant (dnaE486) at nonpermissive temperature. However, complete recovery of DNA synthesis requires the concerted action of both pol II and pol III. Our data demonstrate that pol II and UmuD'(2)C act in independent pathways of replication restart, thereby providing a phenotype for pol II in the repair of UV-damaged DNA.
منابع مشابه
Exchange between Escherichia coli polymerases II and III on a processivity clamp
Escherichia coli has three DNA polymerases implicated in the bypass of DNA damage, a process called translesion synthesis (TLS) that alleviates replication stalling. Although these polymerases are specialized for different DNA lesions, it is unclear if they interact differently with the replication machinery. Of the three, DNA polymerase (Pol) II remains the most enigmatic. Here we report a sta...
متن کاملEffect of SOS-induced Pol II, Pol IV, and Pol V DNA polymerases on UV-induced mutagenesis and MFD repair in Escherichia coli cells.
Irradiation of organisms with UV light produces genotoxic and mutagenic lesions in DNA. Replication through these lesions (translesion DNA synthesis, TSL) in Escherichia coli requires polymerase V (Pol V) and polymerase III (Pol III) holoenzyme. However, some evidence indicates that in the absence of Pol V, and with Pol III inactivated in its proofreading activity by the mutD5 mutation, efficie...
متن کاملRole of accessory DNA polymerases in DNA replication in Escherichia coli: analysis of the dnaX36 mutator mutant.
The dnaX36(TS) mutant of Escherichia coli confers a distinct mutator phenotype characterized by enhancement of transversion base substitutions and certain (-1) frameshift mutations. Here, we have further investigated the possible mechanism(s) underlying this mutator effect, focusing in particular on the role of the various E. coli DNA polymerases. The dnaX gene encodes the tau subunit of DNA po...
متن کاملShifting replication between IInd, IIIrd, and IVth gears.
W e used to think cells could get by with just a few DNA polymerases. One processive polymerase in Escherichia coli [polymerase III (Pol III)] was needed to make the long trip around the genome, and another one (Pol I) was needed to replace Okazaki fragment primers or damaged nucleotides. This view changed radically after 2 seminal studies by Nelson, Lawrence, and Hinkle (1, 2) in which 2 yeast...
متن کاملThe Expanding Polymerase Universe
Escherichia coli DNA polymerase I (pol I), discovered by Arthur Kornberg and colleagues in 1956. Thirteen years later, Paula de Lucia and John Cairns, at Stony Brook, New York, isolated an E. coli mutant, polA (its designation being a play on de Lucia’s first name, as proposed to Cairns by Julian Gross) that seemed to have less than 1% of the normal pol I activity. From this strain, a new DNA-p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 96 16 شماره
صفحات -
تاریخ انتشار 1999